onemilegrid

Bright Strategic Traffic Assessment

Traffic Investigations Report

onemilegrid

ABN: 79168115679
(03) 99398250

56 Down Street
COLLINGWOOD, VIC 3066
www.onemilegrid.com.au

DOCument Information

Prepared for	Alpine Shire Council		
File Name	211064 TIA001D-F.docx	Report Date Repared by	22 July 2022
James Dear			

© One Mile Grid Pty Ltd. This document has been prepared by onemilegrid for the sole use and benefit of the client as per the terms of engagement. It may not be modified or altered, copied, reproduced, sold or transferred in whole or in part in any format to any person other than by agreement. onemilegrid does not assume responsibility or liability to any third party arising out of use or misuse of this document.

Contents

1 Introduction 5
2 Site Context 6
2.1 Site Location 6
2.2 Road Network 6
2.3 Crash History. 9
2.4 Bicycle Facilities 10
2.5 Heavy Vehicles 12
3 BACKGROUND InFORMATION 13
3.1 Camp Street / Mountbatten Avenue 13
3.2 Car Parking Plan 13
3.3 Bicycle Infrastructure Improvements 14
4 Consultation \& Engagement 16
5 Movement \& Place 18
5.1 Overview 18
5.2 Module 1 - Network Classifications 18
6 Car Parking 21
6.1 Survey Methodology 21
6.1.1 Thursday 22
6.1.2 Saturday 23
7 Traffic Analysis 25
7.1 Traffic Surveys 25
7.2 Daily Traffic Volumes 26
7.3 Intersection Performance 28
7.3.1 General 28
7.3.2 Performance Parameters 29
7.3.3 Upgrade Thresholds 30
7.3.4 Analysis \& Discussion 31
7.3.5 Qualitative Observations 32
7.3.6 Sensitivity Analysis 32
7.4 Origin-Destination 35
8 CONCLUSIONS 38
TABLES
Table 1 Road Network Characteristics 7
Table 2 Crash Data 9
Table 3 Movement and Place Summary 20
Table 4 Traffic Volume and Speed Surveys 26
Table 5 Intersection Upgrade Warrants (Akcelik, 2009) 30
Table 6 Intersection Performance - Thursday 20th January 2022 31
Table 7 Network Performance - Thursday 20 th January 2022 31
Table 8 Intersection Performance - Existing 34
Table $9 \quad$ Network Performance (Corridor) 34
Table 10 Origin-Destination Data 35
Table 11 Origin-Destination Data (expressed as \%) 35
Table 12 Intersection Performance 52
Figures
Figure 1 Site Location 6
Figure 2 Road Hierarchy 8
Figure Crash Locations 9
Figure $4 \quad$ Bright Path Network 10
Figure 5 Strava Cycling Heatmap 11
Figure 6 Heavy Vehicle Routes 12
Figure 7 Camp Street / Mountbatten Avenue Upgrades 13
Figure 8 Bicycle Infrastructure Improvements (Extract) 15
Figure 9 Movement and Place Framework Matrix 19
Figure 10 Car Parking Survey Locations 21
Figure 11 Parking Occupancy Profile - Thursday 20th January 2022 - All Parking 22
Figure 12 Parking Occupancy Profile - Thursday 20th January 2022 - On-Street Parking 22
Figure 13 Parking Occupancy Profile - Thursday 20th January 2022 - Off-Street Parking 23
Figure 14 Parking Occupancy Profile - Saturday 22nd January 2022 - All Parking 23
Figure 15 Parking Occupancy Profile - Saturday 22nd January 2022 - On-Street Parking 24
Figure 16 Parking Occupancy Profile - Saturday 22nd January 2022 - Off-Street Parking 24
Figure 17 Traffic Volume Comparison - Gavan Street (at Prices Lane) 27
Figure 18 Traffic Volume Comparison - Gavan Street (East of Barnard Street) 27
Figure 19 Traffic Volume Comparison - Delany Avenue (East of Cherry Lane) 28
Figure 20 Origin-Destination Data - Station 1 35
Figure 21 Origin-Destination Data - Station 2 36
Figure 22 Origin-Destination Data - Station 3 36
Figure 23 Origin-Destination Data - Station 4 37
Figure 24 Potential Cycle Links. 38
Figure 25 Alternative Heavy Vehicle Routes 39
Figure 26 Car Parking Wayfinding 40
Figure 27 Continuous Footpath Treatment (Union Street, Northcote) 41
Figure 28 Movement \& Place Classification - Movement 45
Figure 29 Movement \& Place Classification - Walking 45
Figure 30 Movement \& Place Classification -Freight 46
Figure 31 Movement \& Place Classification -General Traffic 46
Figure 32 Movement \& Place Classification -Tourism Route 47
Figure 33 Movement \& Place Classification - Places of Street Activity 47
Figure 34 Movement \& Place Classification - Places of Off-Street Activity 48

Appendices

Appendix A	Camp Street / Mountbatten Avenue functional Plans
Appendix B	GTA/Stantec/Dot Bicycle Infrastructure Functional Designs
Appendix C	MOVEment \& Place Classifications
Appendix D	MOVEment \& Place Technical Appendix
Appendix e	Detailed Sidra Outputs

Bright is one of the main towns within the Alpine Shire government area, with a permanent population of approximately 2,500 residents. The town's major industry is tourism, due to the proximity to Mount Buffalo National Park, the Mount Hotham and Falls Creek ski fields, as well as the Ovens River.
Due to both an increase in tourism as well as residential and commercial growth across Bright and the surrounds, pressure is growing on the existing road network and parking supply. Of note, Gavan Street, which serves as both the main through road between Bright and surrounding townships, as well as part of the town's main commercial shopping strip is at the epicentre of this pressure.

Alpine Shire Council has accordingly engaged onemilegrid to undertake the first phase (Part A) of a Strategic Transport Assessment of the Bright town centre, which seeks to understand the site's transport context, quantify existing performance of the road network, and provide a clear summary of key issues facing road users.

Later stages of this project may include recommendations for improvements and concept designs and costing of key transport infrastructure.

As part of this assessment the subject site has been inspected with due consideration of the development proposal, traffic and parking data has been sourced and relevant background reports have been reviewed.

2.1 Site Location

The study area for the Bright Strategic Traffic Assessment is shown in Figure 1 below, and comprises the central portions of Bright township, generally between Station Street in the west and Churchill Avenue in the east.

Figure 1 Site Location

Copyright Melway Publishing
The study area includes a range of retail, hospitality, commercial and tourism focused land-uses. The bulk of residential areas in Bright are located outside of the study area. The Ovens River and Splash Park (adjacent to Mountbatten Avenue) are key attractors during summer periods.

2.2 Road Network

A summary of the cross-section and operating characteristic of each road within the study area is presented in Table 1 below.

A road hierarchy is illustrated in Figure 2.

Table 1 Road Network Characteristics

Road Name	Bełween	Classification	Indicative Capacity (vehicles per day)	Alignment	CrossSection	Footpath Provision	Bicycle Facilities	Car Parking	Speed Limif
Gavan Street	 Anderson S \dagger	Arterial	18,000	East-west	Two-way / Two-lane (divided)	Both sides	On-road bike lane: south side	Marked kerbside: angled south side, parallel north side	60 km/h
Gavan Street	Anderson St \& Camp St	Arterial	12,000	East-west	Two-way / Two-lane, painted median	Both sides	None	Marked kerbside	$40 \mathrm{~km} / \mathrm{h}$
Delany Avenue	Camp Street \& Churchill Ave	Arterial	18,000	East-west	Two-way / Two-lane	Both sides	None	Angled (informal) south side	$50 \mathrm{~km} / \mathrm{h}$
Star Road	Riverside Ave \& Gavan S \dagger	Collector	7,000	North-south	Two-way / Two-lane	Both sides	None	Marked angled: east side	$40 \mathrm{~km} / \mathrm{h}$
Anderson Street	Gavan St \& Ireland St	Collector	7,000	North-west/southeast	Two-way / Two-lane (divided)	Both sides	None	Marked	$40 \mathrm{~km} / \mathrm{h}$
Barnard Street	Gavan St \& Ireland St	Collector	3,000	North-south	One-way: southbound	Both sides	None	Marked kerbside	$40 \mathrm{~km} / \mathrm{h}$
Howitt Lane	Gavan St \& Riverside Avenue	Access	3,000	North-south	Two-way unmarked	East side	None	Angled west side	$40 \mathrm{~km} / \mathrm{h}$
Camp Street	Gavan St \& Wills S \dagger	Collector	7,000	North-south	Two-way unmarked	Both sides	None	Kerbside on carriageway	$40 \mathrm{~km} / \mathrm{h}$
Ireland Street	Anderson St \& Cobden St	Collector	7,000	North-south	Two-way / Two-lane (divided)	Both sides	None	Angled both sides	$40 \mathrm{~km} / \mathrm{h}$

Figure 2 Road Hierarchy

2.3 Crash History

Crash history information was obtained through the Department of Transport (VicRoads) CrashStats (the Victorian accident statistics and mapping program) for the latest available 5-year period (1st July 2015-30th June 2020) in the vicinity of the site.

Five crashes were recorded within the study area, shown in Figure 3 and summarised in Table 2.
Figure 3 Crash Locations

Table 2 Crash Data

Q	$\begin{aligned} & \text { ㄷ } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	N	$\begin{aligned} & 0 \\ & \hline 0 \\ & \text { O} \\ & \mathbf{U} \\ & \hline \end{aligned}$	$\frac{\frac{0}{5}}{\frac{5}{0}}$	0 0 0 0 0 0 0 0	-
74930	Star Rd	Other Injury	Vehicle overturned	0	0	2020
56601	Gavan St	Other Injur	Collision with vehicle - entering parking	0	0	2019
48018	Delany Ave	Other Injury	Out of control on carriageway	0	0	2019
32567	Camp St / Gavan S \dagger	Other Injury	Collision with vehicle - right-through	1	0	2017
22103	Delany Ave	Other Injury	Vehicle overturned	1	0	2017

The above crash data does not suggest any specific locations subject to higher incidences of crashes, but the presence of multiple crashes involving bicycles indicates they are overrepresented in the data.

2.4 Bicycle Facilities

Dedicated on-road cycling facilities within the study area are limited to on-road facilities on Gavan Street to the east of the township.

There is an extensive network of off-road shared paths, throughout town, include the Murray to Mountains Rail Trail (MMRT) which terminates adjacent to Railway Avenue south of the study area, the Canyon Walk along the banks of the Ovens River, and a number of linking connections, illustrated in Figure 4. Connections between the MMRT and paths east of the township are discontinuous.

Figure 4 Bright Path Network

It is noted that works are underway on the Great Valley Trail, which will provide an off-road link between Harrietville and Bright, accessed via the Great Alpine Road to the south-east of Bright township.
Strava is a social network and training tool for cyclists, runners and swimmers. Users record their physical activity using a dedicated GPS device or utilise the mobile app, and upload the file to their profile. Strava anonymised this information and makes it available through their "Global Heatmap" tool, showing aggregated all public activities over the last two years across the world.

A view of the cycling heatmap in proximity to the study area is provided below in Figure 5. Routes of higher usage are brighter in colour.

Figure 5 Strava Cycling Heatmap

As shown above, primary routes in and out of the study area comprise:
> Gavan Street;
> The MMRT and Railway Avenue;
> Star Road and Back Porepunkah Road;
, Cobden Street; and
> Anderson Street and Ireland Street.
It is noted that this information includes all cycling activities recorded on the platform, inclusive of weekend trips, and all trips throughout the day. Additionally, the data is potentially skewed within Bright due to the considerable volume of cyclists attracted during events such as the Peaks Challenge and Alpine Classic.

2.5 Heavy Vehicles

The alpine areas surrounding Bright are utilised regularly for logging, and require access within and around Bright township for access to logging coups. Figure 6 details existing routes used for logging purposes (provided HVP Plantations), and approved B-Double routes in the vicinity of the site.

Any proposal for alterations to the transport network arising from this project must consider these access requirements.

Figure 6 Heavy Vehicle Routes

3 BACKGROUND INFORMATION

3.1 Camp Street / Mountbatten Avenue

Council has engaged Foresight Engineering Services to prepare functional plans for improvements to the intersections of Camp Street and Mountbatten Avenue with Gavan Street at the eastern end of the study area.

At the Camp Street intersection, the improvements seek to provide a more conventional Tintersection arrangement. This would remove the existing left-turn pseudo slip lane from the east, providing for reduced vehicle speeds through the intersection, establish a more direct east-west pedestrian connection, and introduce a central island and pedestrian crossing point to the immediate east of Camp Street on Gavan Street.

At the Mountbatten Avenue intersection, the proposal is similar, reducing the width of the intersection by modifying the existing splitter island on Mountbatten Avenue, providing an improved east-west pedestrian connection, and creating a central island and pedestrian crossing point to the immediate east of Mountbatten Avenue on Gavan Street.
The functional plans are attached within Appendix A, an extract of which is provided in Figure 7 below.

Figure 7 Camp Street / Mountbatten Avenue Upgrades

3.2 Car Parking Plan

In mid-2018, Council engaged O'Brien Traffic to prepare a Car Parking Plan for the Bright Township, with a view to identify issues and needs, and develop a Car Parking Plan with identified objectives and a prioritised plan for the effective management of current and future parking demands.

Key issues identified as part of the study were:
> Excessive supply of medium to long term parking (2 hours or more) within the Study Area;
> No short term parking (1 hour or less) restrictions, other than a small number of 10 minute spaces;
> No parking restrictions on Saturday afternoons or Sundays;
> Limited enforcement of the existing 2 hour parking restrictions - enabling long term parking by locals and (at peak times) tourists;
> Impact of events on parking in the Study Area, and how this may change following the development of the Alpine Events Centre.

A suite of short-term and long-term actions were provided with the report, which broadly included:
> Increased enforcement of short-term restrictions
> Creation of additional short-term parking
> Extension of restrictions to weekend periods;
> Improved directional signage;
> Improvements to existing parking designs for increased supply;
> Developing strategies for managing demands associated with events;
> Improving access to accessible parking and loading areas;

3.3 Bicycle Infrastructure Improvements

As part of actions identified within the Alpine Shire Cycle Safety Strategy, functional designs have been prepared by GTA Consultants (now Stantec) and the Department of Transport (DoT) for improvements to on-road cycling facilities throughout the study area.

Along Gavan Street Between Prices Road and Anderson Street, the works seek to establish highquality on-road bicycle lanes, with use of separators and tactile line marking to assist with driver delineation and reducing vehicle speeds at conflict points.
Further east through the town centre, Gavan Street is to be marked with "sharrow" bike treatments to emphasise the shared use of the road, and encourage cyclists to take the lane. Similar treatments are proposed along each of Anderson Street, Camp Street and Ireland Street.

Improvements are also proposed at the Gavan Street / Anderson Street, Anderson Street / Ireland Street, and Ireland Street / Railway Avenue roundabouts that reduce the circulating carriageway with line marking and install sharrow treatments within the roundabout.
A copy of the functional designs is attached within Appendix B, with an extract in Figure 8 below.

Figure 8 Bicycle Infrastructure Improvements (Extract)

As part of background review and fact-finding on the project, onemilegrid and Council undertook a series of online consultation sessions on the 19 th January 2022 with key community stakeholders. Key findings from these sessions are provided below.
In many cases, issues relating to areas outside of the study area were raised, which have not been detailed within this report, but provided to Council for separate follow-up and review.

Country Fire Authority (CFA)

> Representative: Carl Stibilij
> Access/movement needs within Bright

+ Typically 1-2 call outs per week
+ Responders need to get to station, then get appliance to event/call
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Biggest issue is traffic congestion during large events, which are regular occurrence
+ Station location is good for volunteer access, responding is main issue

State Emergency Service (SES)

> Representative: Roy Kennedy
> Access/movement needs within Bright

+ Respond to tree falls, weather emergencies, road accidents
+ Typically 3 call outs per week
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Access to areas north of Bright are difficult during peak season with events and tourists
+ Bottleneck between Camp Street / Anderson Street is major challenge

HVP Plantations)

> Representatives: Steve Blake, Brendan Harding, Prue Day
> Access/movement needs within Bright

+ Require long-term access to logging coups, and will be working within bright for 5-10 years
+ Morses Creek Road, Churchill Avenue and Great Alpine Road are key access routes
+ Large vehicles require access
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Poor road surface on feeder routes can encourage cyclists into centre of roads
+ Longer vehicles parked in angled spaces with rear-mounted bicycle can reduce the effective width of roads

Alpine Cycling Club

> Representative: John Presswell
> Access/movement needs within Bright

+ Cycling community comprises road cyclists, MTB riders, families
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Gavan Street is no less safe than other locations;
+ Pedestrian traffic naturally assists with traffic calming

Chamber of Commerce

> Representatives: Bruce Hore, Rupert Shaw
> Access/movement needs within Bright

+ Chamber of Commerce was to ensure continued growth and attractiveness for visitors, being easy to get around town on foot, car or bicycle is important
+ Various operators (IGA, Crispys, Brewery) require access for large vehicles
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Traffic islands with pedestrian crossing points create conflicts with drivers around priority
+ Right-turns across Gavan Street hold up traffic behind
+ Limited off-street parking areas encourage circulating traffic through township, exacerbating traffic issues

Ambulance Victoria

> Representative: Michael Bennet
> Access/movement needs within Bright

+ Station located on Mountbatten Avenue
+ Require access for AWD Mercedes van, a standard ambulance, and troop carrier
> What are the major traffic/transport issues in Bright that affect your operations (or your stakeholders)?
+ Access from the station into Bright and into Myrtleford can be problematic with traffic
+ Congestion on Gavan Street means ambulances may be blocked entirely, with no passing opportunities
+ Issues are primarily in summer holiday periods

5.1 Overview

The Movement \& Place framework was introduced by the Department of Transport (DoT) in February 2019 and provides a new approach to integrated transport planning in Victoria.

Three main principles underline the Dot's approach to transport planning within the movement and place framework.

1. People First - We put transport users at the centre of everything we do;
2. Outcomes Focused - We focus on outcomes that deliver more choice, connections and confidence in our travel; and
3. One System - We think as one system, not individual projects or modes.

The Movement \& Place framework recognises that streets perform multiple roles and functions beyond moving people from A to B. It recognises the role of streets as places and destinations in their own right, and allows the organisation and classification of transport links by their place and movement roles as well as allowing for the development of performance measures and interventions.

5.2 Module 1 - Network Classifications

Streets are classified on a scale of local to state significance, as detailed below, and shown in Figure 9.
> Movement

+ M1: Mass movement of people and/or goods on routes with a state or national-level movement function or provides primary access to state-level places.
+ M2: Significant movement of people and/or goods on routes connecting across multiple municipalities or provides primary access to regional-level places.
+ M3: Moderate movement of people and/or goods on routes connecting municipalities or provides primary access to municipal-level places.
+ M4: Movement of people and/or goods within a municipality.
+ M5: Local movement
> Place
+ P1: Place of state or national significance.
+ P2: Place of regional significance.
+ P3: Place of municipal significance.
+ P4: Place of neighbourhood significance.
+ P5: Place of local significance.
Each of the 'Movement' and 'Place' categories have a series of sub-categories that can also be classified in terms of their importance. These include:
> Movement: Walking, Cycling, Bus, Tram, Interchange, Freight, General Traffic, Tourism Route
> Place: Places of Street Activity, Places of Off-Street Activity
The Network Classifications - Module 1 technical appendix to the Movement \& Place framework is attached within Appendix D., which defines each of theses sub-categories.

Figure 9 Movement and Place Framework Matrix

The Department of Transport has drafted Movement and Place classifications for the bulk of populated areas of Victoria's transport network, including the study area, though these are being refined and reviewed over time.

A summary of the pertinent classifications are provided in Table 3 below, with associated figures in Appendix C.

While the DoT classifications are broadly appropriate, it is considered that there are some that are not necessarily accurate:
> Cycling - The M\&P tool does not recognise the significance of Gavan Street in particular as a cycling route, as nothing but Strategic Cycling Corridors are currently mapped. Planned upgrades within Bright (referenced in Section 3.3) may prompt a reclassification. It is likely that Gavan Street would be classified C3: "Municipal routes support mostly local, short trips to activity centres, including important links to stations and other interchanges. They also feed to C1 and C2 routes (SCCs)."
> Place: While the designation of PA4 ("Neighbourhood level of significant place of activity, serving people from immediate neighbourhoods, e.g. milk bars and local shops.") for the majority of the study area is an accurate assessment of the function during off-peak periods, the M\&P tool does not allow consideration of the changing nature of the Bright Activity Centre during peak tourism periods. Over the summer period and long weekends in particular, the study area is considered better classified as PA2: "Regionally significant place of activity. People travel from adjoining municipalities to experience and use the place. The place has a large number of on-street staying activities e.g. shops and alfresco dining." A PA2 classification suggest greater prioritisation of place aspects and pedestrian movements over vehicular traffic.

Table 3 Movement and Place Summary

Road	Between		$\begin{aligned} & 0 \\ & \frac{1}{3} \\ & \vdots \\ & 3 \end{aligned}$	0 0 0 0 0 0	$\frac{\pi}{0}$	0 0 0 0 0 0 0 0 0	Tourism Roułe	Place Significance	
Gavan Street	Station St \& Anderson St	M3	W3	-	F3	GT3	TR1	PA4	Activity Street \& Boulevard
Gavan Street	Anderson St \& Camp St	M3	W3	-	F3	GT3	TR1	PA4	Activity Street \& Boulevard
Delany Avenue	Camp Street \& Churchill Ave	M3	W3	-	F3	GT3	TR1	PA5	Connector
Star Road	Riverside Ave \& Gavan St	M5	W4	-	-	GT5	-	PA4	Local Street
Anderson Street	Gavan St \& Ireland St	M5	W4	-	-	GT5	-	PA4	Local Street
Barnard Street	Gavan St \& Ireland St	M5	W4	-	-	GT5	-	PA4	Local Street
Howitt Lane	Gavan St \& Riverside Avenue	M5	W4	-	-	GT5	-	PA4	Local Street
Camp Street	Gavan St \& Wills St	M5	W4	-	-	GT5	-	PA4	Local Street
Ireland Street	Anderson St \& Cobden St	M5	W4	-	-	GT5	-	PA4	Local Street

6.1 Survey Methodology

In order to establish existing car parking demands in the vicinity of the site, onemilegrid commissioned car parking occupancy surveys within and around the study area during the following periods:
> Thursday $20^{\text {th }}$ January 2022: 30.0 degrees maximum temperature, 0 rainfall
> Saturday $22^{\text {nd }}$ January 2022: 31.4 degree maximum temperature, 0 rainfall
The survey area is identified in Figure 10 below.
Figure 10 Car Parking Survey Locations

6.1.1 Thursday

6.1.1.1 Total

On the Thursday, the surveys identified a constant supply of 494 parking spaces throughout the survey period. Peak occupancy occurred at 2:00 PM when 349 spaces were occupied, leaving no fewer than 145 spaces available for use. Parking utilisation varied between 71% and 49% of capacity. A view of the parking occupancy profile is provided in Figure 11 below.

Figure 11 Parking Occupancy Profile - Thursday 20th January 2022 - All Parking

6.1.1.2 On-Street

Limiting the survey data to on-street parking only, there was a supply of 265 parking spaces throughout the survey period. Peak occupancy occurred at 2:00 PM when 201 spaces were occupied, leaving no fewer than 64 spaces available for use. Parking utilisation varied between 76% and 49% of capacity.
Parking demands on Gavan Street were at or approaching capacity during peak times, and surrounding streets were also quite busy. A view of the parking occupancy profile is provided in Figure 12 below.

Figure 12 Parking Occupancy Profile - Thursday 20th January 2022 - On-Street Parking

6.1.1.3 Off-Street

Reviewing off-street parking only, there was a supply of 229 parking spaces available for use. Peak occupancy occurred at 12:00 PM when 151 spaces were occupied, leaving no fewer than 78 spaces available for use. Parking utilisation varied between 66% and 49% of capacity.
Demands within the Woolworths car park were generally between 68% and 73% occupancy throughout the day, while demands within the parking areas around Howitt Park were approximately 65% occupied. A view of the parking occupancy profile is provided in Figure 13 below.

Figure 13 Parking Occupancy Profile - Thursday 20th January 2022 - Off-Street Parking

6.1.2 Saturday

6.1.2.1 Total

On the Saturday, the surveys identified a constant supply of 483 parking spaces throughout the survey period. Peak occupancy occurred at 2:00 PM when 317 spaces were occupied, leaving no fewer than 166 spaces available for use. Parking utilisation varied between 66% and 48% of capacity. A view of the parking occupancy profile is provided in Figure 14 below.

Figure 14 Parking Occupancy Profile - Saturday 22nd January 2022 - All Parking

6.1.2.2 On-Street

Limiting the survey data to on-street parking only, there was a supply of 265 parking spaces throughout the survey period. Peak occupancy occurred at 2:00 PM when 186 spaces were occupied, leaving no fewer than 79 spaces available for use. Parking utilisation varied between 70% and 54% of capacity.
Consistent with the Thursday data, occupancy along Gavan Street was quite high, with reduced demands further afield. A view of the parking occupancy profile is provided in Figure 15 below.

Figure 15 Parking Occupancy Profile - Saturday 22nd January 2022 - On-Street Parking

6.1.2.3 Off-Street

Reviewing off-street parking only, there was a supply of 229 parking spaces throughout the survey period. Peak occupancy occurred at 2:00 PM when 142 spaces were occupied, leaving no fewer than 87 spaces available for use. Parking utilisation varied between 62% and 40% of capacity.

Demands within the Woolworths car park were between 55% and 60% occupancy throughout the day, while demands within the parking areas around Howitt Park were up to 80% occupancy at peak times. A view of the parking occupancy profile is provided in Figure 16 below.

Figure 16 Parking Occupancy Profile - Saturday 22nd January 2022 - Off-Street Parking

7.1 Traffic Surveys

In order to quantify and evaluate intersection and road performance throughout the study area, a considerable body of traffic data has been collected and analysed.

Due to Council CCTV policy, video surveys were unable to be undertaken to establish turning movements at critical intersections. As such, an alternative approach to data collection was derived whereby pneumatic "tube" counters were placed on approach to each intersection to determine approach volumes, and site observations ($18^{\text {th }}$ January and $20^{\text {th }}$ January) used to establish the distribution of turning movement at each approach.
These surveys were undertaken from the $20^{\text {th }}$ until the $26^{\text {th }}$ of January 2022, which includes the end of the summer school holidays, and the Australia Day public holiday, both typically busy periods for tourism and visitation in Bright.

Using this data, we were able to determine turning movement data for each hour across the week at the following intersections:
> Gavan Street / Anderson Street;
> Gavan Street / Star Road;
> Gavan Street / Barnard Street;
> Gavan Street / Howitt Lane;
> Gavan Street / Camp Street; and
> Anderson Street / Barnard Street / Ireland Street / Burke Street;
In addition to the above, three tube counters were retained for the two weeks following (up to $9^{\text {th }}$ February) to allow an understanding of typical traffic conditions outside of holiday periods, located at:
> Gavan Street (at Prices Road);
> Gavan Street (between Barnard Street and Howitt Lane); and
> Delany Avenue (east of Cherry Lane).

7.2 Daily Traffic Volumes

A summary of the daily traffic volume data at select locations (for the week of $20-26 / 1 / 22$) is provided below.

Table 4 Traffic Volume and Speed Surveys

Location	Segment	Direction	Daily Traffic Volume (vpd)	\% of Capacity	Peak Traffic Volume (vpd)		85 ${ }^{\text {th }}$ Percentile Speed (km/h)
					AM Peak	PM Peak	
Ireland Street	South of Camp Street	Northbound	2,377	69\%	231	218	22.8
		Southbound	2,430		244	229	30.1
		Combined	4,807		475	447	26.6
Anderson Street	South of Gavan Street	Northbound	2,756		263	252	29.9
		Southbound	1,442	60\%	142	139	30.3
		Combined	4,198		405	391	30.1
Camp Street	South of Gavan Street	Northbound	1,262		118	108	28.9
		Southbound	1,073	33\%	103	91	31.4
		Combined	2,335		221	199	30.1
Barnard Street	South of Gavan Street	Northbound	-		-	-	-
		Southbound	1,252	42\%	136	117	22.3
		Combined	1,252		136	117	22.3
Star Road	North of Gavan Street	Northbound	2,143		170	190	34.4
		Southbound	1,992	59\%	164	153	34.4
		Combined	4,135		334	343	34.3
Back Porepunkah Road	West of Star Road	Westbound	1,502		118	121	48.0
		Eastbound	1,356	16\%	122	129	45.7
		Combined	2,858		240	250	46.9
Gavan Street	At Prices Lane	Westbound	3,394		329	303	55.0
		Eastbound	3,052	36%	261	268	57.6
		Combined	6,446		590	571	56.3
Gavan Street	East of Barnard Street	Westbound	4,680		435	397	34.8
		Eastbound	3,725	70\%	299	311	36.6
		Combined	8,405		734	708	35.7
Delany Avenue	East of Cherry Lane	Westbound	3,354	36\%	311	255	54.1
		Eastbound	3,083		237	292	54.5
		Combined	6,437		548	547	54.3

The above data suggests that all roads operate with daily traffic volumes suitable for their function and cross-section, as described within Table 1. Gavan Street carries up to 8.400 vehicles per day (vpd) in the central section, while Collector Streets (Anderson, Camp, Ireland) all carry less than 5,000 vpd, well below the typical upper limit of 7,000 vpd preferred for Collector Streets.
Traffic speeds throughout the network are generally at or less than $30 \mathrm{~km} / \mathrm{h}$, with the exception of key access routes outside of the central areas of town (Back Porepunkah Road, Delany Avenue). This suggests that most roads are suitable for shared use by cyclists and vehicles, and the risks of serious or fatal conflicts between vehicles and pedestrians/cyclists is relatively low.

A summary of traffic data trends across the surveys extended to $9^{\text {th }}$ February is illustrated in Figure 17, Figure 18, and Figure 19 below, with key dates and notable events identified.

Broadly, traffic volumes during the first week of surveys (20-26th January 2022) was considerably higher than the two weeks following, even though there was an additional week of school holidays in the middle week. On a typical weekday, traffic volumes during the busier weeks were between 15% and 30% higher than non-holiday periods.

Figure 17 Traffic Volume Comparison - Gavan Street (at Prices Lane)

Figure 18 Traffic Volume Comparison - Gavan Street (East of Barnard Street)

Figure 19 Traffic Volume Comparison - Delany Avenue (East of Cherry Lane)

7.3 Intersection Performance

7.3.1 General

To assess the operation of each surveyed intersection, the traffic volumes derived have been input into SIDRA Intersection, a traffic modelling software package.

Noting the above data, which suggests that the first week of data collection is significantly higher than that collected in the weeks following, we have adopted data from Thursday $20^{\text {th }}$ January for analysis purposes. This represents a relatively conservative assessment and is likely reflective of typical traffic conditions across the summer holiday period. The busiest one-hour period occurred across the network between 11:00 AM - 12:00 PM.

Given the proximity of the surveyed intersections, they have been modelled as a network model, which accounts for interactions between adjacent intersections, and capacity reductions caused by downstream queueing effects.

7.3.2 Performance Parameters

In assessing the performance of individual intersections, the parameters considered relevant are, Degree of Saturation (DoS), $95^{\text {th }}$ Percentile Queve, and Average Delay as described below.
> Degree of Saturation (DoS) - The DoS represents the ratio of the traffic volume making a particular movement compared to the maximum capacity for that particular movement. The value of the DoS has a corresponding rating depending on the ratio as shown below.

DoS	Rating	Description
Up to 0.60	Excellent	Minimal delays
$0.61-0.70$	Very Good	Minimal delays $0.71-0.80$
$0.81-0.90$	Good	Delays and queues increasing $0.91-1.00$
Poor	Delays and queues growing. Any interruption to flow such as minor incidents causes increasing delays	
Above 1.00	Very Poor starting to break down and queues and delays increase	
rapidly		

It is noted that whilst the range of $0.91-1.00$ is rated as 'poor', it is acceptable for critical movements at an intersection to be operating within this range during high peak periods, reflecting actual conditions in a significant number of suburban signalised intersections.
> Average Delay (seconds) - Average delay is the time delay that can be expected for all vehicles undertaking a particular movement in seconds.
> $95^{\text {th }}$ Percentile (95% ile) Queue -95% ile queve represents the maximum queue length in metres that can be expected in 95% of observed queue lengths in the peak hour.

In assessing network performance, a more holistic assessment has been undertaken, considering the following performance factors:
> Level of Service (LoS) - A ranking of speed efficiency, which is the ratio of average travel speed to desired speed with the corresponding rating depending on the ratio as shown below.

LoS	Speed Efficiency	Description
A	$0.91-1.00$	Traffic flows at or above the posted speed limit
B	$0.81-0.91$	Reasonably free flow
C	$0.71-0.80$	Stable flow, at or near free flow
D	$0.51-0.70$	Speeds slightly decrease as traffic volume slightly increase E
Flow becomes irregular and speeds rarely reach the posted		
limit		

> Travel Speed (km/h) - Average travel speed across the network
> Degree of Saturation (DoS) - DoS of critical intersection within network
> Average Control Delay (s) - The average additional travel time experienced by a vehicle relative to a base travel time at free flow speeds. Includes geometric delay (associated with undertaking a turn), and queveing delay occurring at a hold line at an intersection

7.3.3 Upgrade Thresholds

For signalised intersections, it is commonly accepted that a DoS greater than 0.95 represents the intersection reaching practical capacity. Any increase to traffic flows will trigger the need to consider upgrades for additional capacity, or alternative solutions.
For unsignalised intersections, it is important to consider the impact of delays, in addition to DoS when describing intersection performance.

Research undertaken by SIDRA software developer Rahmi Akcelik has identified upgrade triggers for sign-controlled, roundabout, and signalised intersections based on Level of Service parameters which consider the Degree of Saturation (DoS) and control delays. In this model, LoS is determined based on an "or" condition where either DoS or delay parameters are triggered.
When an intersection exceeds LoS D (i.e. LoS E or F), an upgrade is warranted. This is summarised in Table 5 below.

Table 5 Intersection Upgrade Warrants (Akcelik, 2009)

Level of Service	Control delay per vehicle in seconds (d)			Degree of saturation (v/c ratio) (x)
	Signals	Roundabouts	Stop and Give-Way / Yield Signs	
A	$\mathrm{d} \leq 10$	$\mathrm{d} \leq 10$	$\mathrm{d} \leq 10$	$0<x \leq 0.85$
B	$10<\mathrm{d} \leq 20$	$10<\mathrm{d} \leq 20$	$10<\mathrm{d} \leq 15$	$0<x \leq 0.85$
C	$20<d \leq 35$	$20<d \leq 35$	$15<d \leq 25$	$0<x \leq 0.85$
D	$35<d \leq 55$	$30<d \leq 50$	$25<d \leq 35$	$0<x \leq 0.85$
	$0<d \leq 55$	$0<d \leq 50$	$0<d \leq 35$	$0.85<x \leq 0.95$
E	$55<d \leq 80$	$50<d \leq 70$	$35<d \leq 50$	$0<x \leq 0.95$
	$0<d \leq 80$	$0<d \leq 70$	$0<d \leq 50$	$0.95<x \leq 1.00$
F	$80<d$	$70<d$	$50<d$	$1.00<x$

7.3.4 Analysis \& Discussion

A summary of the SIDRA outputs for each intersection, and for the network as a whole are presented in Table 6 and Table 7 below.

Table 6 Intersection Performance - Thursday 20th January 2022

Site No.	Site	Approach	DoS	Avg. Delay (sec)	Queue (m)	Rating	LoS
1	Gavan St / Anderson St	South	0.284	6.3	12.7	Excellent	A
		East	0.300	2.1	14.2	Excellent	A
		West	0.298	4.5	14.0	Excellent	A
2	Gavan St / Star Rd	East	0.226	1.6	5.1	Excellent	A
		North	0.214	9.8	6.0	Excellent	A
		West	0.194	0.6	1.1	Excellent	A
3	Gavan St / Barnard St	East	0.232	0.7	0.0	Excellent	A
		West	0.226	1.6	5.1	Excellent	A
4	Gavan St / Howitt Ln	East	0.221	0.3	1.0	Excellent	A
		North	0.038	10.7	0.9	Excellent	A
		West	0.182	0.6	0.0	Excellent	A
5	Gavan St / Camp St	South	0.131	5.3	3.5	Excellent	A
		East	0.101	0.5	0.6	Excellent	A
		West	0.191	0.6	2.1	Excellent	A
6	Anderson St / Barnard St / Ireland St	South	0.194	2.2	7.9	Excellent	A
		North	0.114	4.3	4.2	Excellent	A
		North-west	0.108	5.1	4.1	Excellent	A
		South-west	0.024	3.9	0.9	Excellent	A

Table 7 Network Performance - Thursday 20th January 2022

| Period | Parameter | Performance | |
| :---: | :--- | :---: | :---: | :---: |
| | | Eastbound | Westbound |
| AM Peak | ToS | D | D |
| | Travel Speed $(\mathrm{km} / \mathrm{h})$ | 37.3 | 39.0 |
| | DoS | 0.298 | 0.300 |

As demonstrated above, all intersections are operating under excellent conditions, with minimal delays of not more than 11 seconds across the network, and queues typically not exceeding 2-3 vehicles. It is noted that delays presented in Table 6 include geometric delays (time taken to execute a turn) and control delays (time waiting at the hold line).

Across the network, modelling suggests that through traffic is generally unimpeded, and rarely held up due to turning movements for long periods.

We can therefore infer that no upgrades or interventions are warranted on a capacity basis within the study area.

7.3.5 Qualitative Observations

Observations from our site inspections are as follows:
> Gavan St / Anderson St

+ Typically free-flowing traffic
+ Minimal queueing
+ Driver delays are generally only a few seconds
+ Pedestrian facilifies could be improved, but do not cause significant pedestrian delay
> Gavan St / Star Rd
+ Right-turn into service station blocks through traffic on Gavan Street
+ Modest delays for drivers exiting Star Road
+ Right-out movement is critical, and can briefly generate queues up to 5 vehicles, but tends to clear quickly
> Gavan St / Barnard St
+ Right-turn into Barnard Street blocks through traffic
+ Delay of up to approximately 12 seconds observed for right-turn during peak periods
+ Queues up to 8 vehicles generated on Gavan Street behind a propped vehicle, but slow moving queues rather than static
> Gavan St / Howitt Ln
+ Some delay for right-out movements
+ Maximum 4 vehicles queued from Howitt Park
> Gavan St / Camp St
+ Generally free-flowing
+ Poor sight distance for right-out movement from Camp Street, with drivers relying on longer gaps. Modest delays for right-out movement as a result
+ Parking on west approach also inhibits sight distance partially
+ Long crossing distances for pedestrians
+ Relatively high-speed turning movements, particularly from east to south
> Anderson St / Barnard St / Ireland St
+ Lots of bike traffic, with potential conflicts at roundabout for path connection
+ Drivers typically travelling quite slow
+ Good visibility
+ Lots of parking activity evidence by u-turns

7.3.6 Sensitivity Analysis

Noting that our data collection occurred over a 1 -week period, we have also undertaken additional analysis that considers the network performance on both Saturday $22^{\text {nd }}$ and Wednesday $26^{\text {th }}$ January (Australia Day public holiday) to evaluate the likely worst-case period.

The results of the analysis are summarised in Table 8 and Table 9 below, with detailed data provided in Appendix E.

All intersections in all assessment periods are modelled to operate under excellent conditions and with a Level of Service A. Performance during Saturday peak is effectively equivalent to the Thursday, with the DoS, average delay and $95^{\text {th }}$ percentile queues all comparable. Performance on the Wednesday (Australia Day) peak is marginally worse, with queues increasing by up to one vehicle length at the Gavan Street / Anderson Street intersection, but only marginal increases elsewhere.

Network performance for each assessment period is comparable, with speeds remaining effectively unchanged, and only minor differences in average control delay.
These differences in performance are only minor as the highest traffic volumes (Wednesday) are only 3% higher than the Thursday period. Similarly, the Saturday volumes are only 2% higher.

A summary of the SIDRA outputs for each intersection, and for the network as a whole are presented in Table 6 and Table 7 below.
Table 8 Intersection Performance - Existing

Site No.	Site	Approach	Thur 20th January 2022		Sat 22nd January 2022		Wed 26th January 2022	
			Rating	LoS	Rating	LoS	Rating	LoS
1	Gavan St / Anderson St	South	Excellent	A	Excellent	A	Excellent	A
		East	Excellent	A	Excellent	A	Excellent	A
		West	Excellent	A	Excellent	A	Excellent	A
2	Gavan St / Star Rd	East	Excellent	A	Excellent	A	Excellent	A
		North	Excellent	A	Excellent	A	Excellent	A
		West	Excellent	A	Excellent	A	Excellent	A
3	Gavan St / Barnard St	East	Excellent	A	Excellent	A	Excellent	A
		West	Excellent	A	Excellent	A	Excellent	A
4	Gavan St / Howitt Ln	East	Excellent	A	Excellent	A	Excellent	A
		North	Excellent	A	Excellent	A	Excellent	A
		West	Excellent	A	Excellent	A	Excellent	A
5	Gavan St / Camp St	South	Excellent	A	Excellent	A	Excellent	A
		East	Excellent	A	Excellent	A	Excellent	A
		West	Excellent	A	Excellent	A	Excellent	A
6	Anderson St / Barnard St / Ireland S \dagger	South	Excellent	A	Excellent	A	Excellent	A
		North	Excellent	A	Excellent	A	Excellent	A
		North-west	Excellent	A	Excellent	A	Excellent	A
		South-west	Excellent	A	Excellent	A	Excellent	A

Table 9 Network Performance (Corridor)

Period	Parameter	Thur 20th January 2022		Sat 22nd January 2022		Wed 26 ${ }^{\text {th }}$ January 2022	
		Eastbound	Westbound	Eastbound	Westbound	Eastbound	Westbound
AM Peak	LoS	D	D	D	D	D	D
	Travel Speed (km/h)	37.3	39.0	37.3	39.0	37.2	39.0
	DoS	0.298	0.300	0.323	0.298	0.343	0.327
	Average Control Delay (s)	0.6	0.5	0.6	0.5	0.7	0.5

7.4 Origin-Destination

In addition to conventional traffic surveys, onemilegrid commissioned origin-destination surveys on Thursday $20^{\text {th }}$ January 2022 from 7:00 AM until 9:00 PM to establish the patterns of traffic flow through the township.

This is determined through the use of four Bluetooth "stations" that detect Bluetooth signals from vehicles and mobile devices, and track these through the other stations to determine the origins and destinations, to allow an understand of movement through the centre.
A summary of the data is provided in Table 10 below.
Table 10 Origin-Destination Data

Station No.		Destination Station				Total
		1	2	3	4	
	1	-	487	391	568	1,446
	2	700	-	807	1,130	2,637
	3	348	492	-	564	1,404
	4	641	882	700	-	2,223
Tołal		1,689	1,861	1,898	2,262	

Table 11 Origin-Destination Data (expressed as \%)

Station No.		Destination Station				Total
		1	2	3	4	
$\frac{5}{0}$	1		34\%	27\%	39\%	100\%
	2	27\%		31\%	43\%	100\%
	3	25\%	35\%		40\%	100\%
	4	29\%	40\%	31\%		100\%

Figure 20 Origin-Destination Data - Station 1

Figure 21 Origin-Destination Data - Station 2

Figure 22 Origin-Destination Data - Station 3

Figure 23 Origin-Destination Data - Station 4

Based on the preceding analysis, we can make the following conclusions regarding the transport network performance within Bright:
> Crash history within the study area does not indicate any locations of high-incidence of crash behaviour, but does indicate that cyclists crashes are over-represented relative to cyclist volumes. Vehicle speeds on most lower-order roads are approximately $30 \mathrm{~km} / \mathrm{h}$ which is an acceptable speed to avoid serious injuries or fatalities for vulnerable road users.
> There are limited on-road cycling facilities within the study area, and a lack of clear, direct offroad connections between the popular MMRT and paths to the east of the Township. Upgrades to on-road cycling facilities on Gavan Street, Ireland Street, and Anderson Street (as noted in Section 3.3) will assist with conveying the legitimacy of cycling activity on these key roads, however traffic volumes and higher than preferred speeds on Gavan Street will likely reduce the attractiveness of travelling via Gavan Street for all but the most confident of cyclists. As a guide, shared use of the carriageway by cyclists and drivers is generally considered appropriate $85^{\text {th }}$ percentile traffic speeds up to $30 \mathrm{~km} / \mathrm{h}$ and volumes generally up to $1,500-3,000$ vehicles per day. Consideration should be given to establishing an alternative east-west connection that provides for improved connection around the path network. This could include Wood Street and Camp Street, as shown in Figure 24 below, which provide for low traffic speeds and relatively low traffic volumes.. It is noted that Camp Street is to be upgraded as part of the Bicycle Infrastructure Improvements project. Cycling safety measures (e.g. sharrow line marking) should be implemented along these links to ensure all cyclists feel safe,

Figure 24 Potential Cycle Links

> Gavan Street is an approved B-double route and is regularly utilised for logging activity, though large trucks comprise only 0.25% of vehicles within central Bright. Ireland Street and Anderson Street form part of a haulage route that extends to logging areas access from Bakers Gully Road. The presence of logging vehicles on areas of high pedestrian and parking activity, particularly on Ireland Street is undesirable. It would be preferable to encourage logging operators to utilise alternative access routes to access Gavan Street such as Railway Avenue / Station Street to the west as shown in Figure 25 below, though it is acknowledged that the residential interface on Railway Avenue and Station Street may be sensitive to logging vehicles,
and that there are physical restrictions on accessibility for larger vehicles. Alternatively, logging vehicles could be removed altogether from southern Bright by utilising alternative exits from plantation areas.

Figure 25 Alternative Heavy Vehicle Routes

> Emergency Services stakeholders consistently identified difficulties in travelling through central Bright during peak periods due to congestion. Traffic analysis suggests intersection performance is within acceptable bounds for general traffic use, however this modest level of traffic congestion may not be appropriate in an emergency context. For emergency call outs outside of central Bright, operators should prioritise use of Hawthorn Lane / Cobden Street / Railway Avenue to bypass slow-moving traffic along Gavan Street in peak periods.
> The bulk of streets within the study area are designated as "Local Streets" under the DoT Movement and Place framework. The design of these areas (including Anderson Street, Barnard Street, Howitt Lane, Camp Street and Ireland Street) is generally appropriate for their function, and they appear to operate well. Gavan Street is presently designated an "Activity Street \& Boulevard" function with a higher General Traffic than Place function. This does not reflect the regional significance of Bright as a tourism destination during peak periods, where a higher Place function is warranted. The streetscape design within central Bright, comprising relatively narrow traffic lanes, with street furniture and regular pedestrian crossings appropriately reflects this balance of Movement and Place functions.
> Car parking demands within the Activity Centre are relatively high during the early afternoon peak periods, with most on-street parking fully occupied within the central areas. Off-street parking opportunities are limited, and wayfinding signage could be improved, which can contribute to additional traffic circulating for parking. Consider improving wayfinding to parking areas as shown in Figure 26, and establishing additional off-street parking locations. Wayfinding signage will ensure that visitors unfamiliar with the area are aware of off-street parking locations, and do not need to continue circulating looking for on-street parking.

Figure 26 Car Parking Wayfinding

> Activity within Bright, and the associated traffic volumes, are variable throughout the year, with traffic volumes across the summer holiday period and on long weekends considerably higher than off-peak periods.
> Traffic volumes across the network do not exceed capacity having regard to the function and cross-section of each road, as described within Table 1 and Table 4. Daily volumes are all less than 70% of typical daily capacity, even during peak holiday periods.
> Peak-hour intersection modelling suggests that all intersections are operating under 'excellent' conditions, with only modest queueing and delays, and no upgrades or interventions are warranted on a capacity basis. Even accounting for the busiest periods during a week-long survey, the road network was performing with a high level of service. Queues were observed occasionally forming behind turning vehicles, but quickly dissipated. Some level of congestion and queueing is desirable in an Activity Centre context to assist with traffic calming. This ensures that vehicle speeds remain relatively low, leading to better pedestrian amenity, and reduced likelihood and severity of crashes, among other benefits.
> All intersections are generally designed appropriately, providing appropriate sight distances, suitably catering for design vehicles, and with no trends of crash history. The planned improvements to the Camp Street / Gavan Street intersection will provide for improved safety by assisting with reducing vehicle speeds, improving pedestrian connection, and improving sight distance. It is recommended that this work be pursued as a priority.
> Delays to pedestrians within the study area are generally minimal, with slow vehicle speeds generally allowing pedestrians to safely and conveniently cross Gavan Street during peak periods, and lower traffic volumes in off-peak periods providing ample gaps. Observations onsite suggested that delays for pedestrians were generally less than 20 seconds, which suggests very good performance based on Movement \& Place definitions.
> Implementation of continuous footpath treatments across side-road intersections with Gavan Street (including Barnard Street, Howitt lane and Camp Street as a priority) will improve pedestrian amenity, and assist with lowering turning vehicle speeds and emphasising a driver's
obligation to give way to pedestrians when entering a side road. This will not adversely affect Gavan Street traffic, or its role as a traffic route of municipal significance. See Figure 27 below for an example treatment.

Figure 27 Continuous Footpath Treatment (Union Street, Northcote)

> Origin-destination data suggests that traffic entering Bright is relatively evenly distributed across multiple destinations, indicating that through-traffic is not a contributor to perceived traffic issues. Noting that daily and peak-hour traffic remain comfortably within capacity, there is little justification as a result for establishing an Alternative Route or Bypass at this stage. Should traffic volumes increase from that surveyed during the summer peak (e.g. due to ongoing residential development or tourism increases) then it would require growth of approximately 50% on central Gavan Street until traffic volumes exceed capacity, and an Alternative Route or Bypass may be warranted. High-level modelling undertaken for the Bright Western Gateway suggests residential development in this area may contribute approximately 1,350 additional vehicle movements into central Bright. Allowing for a further 2% annual growth rate, the nominal 12,000 vpd capacity on central Gavan Street may be exceeded in 11 years.
> Traffic surveys and site observations were undertaken in periods subject to no restriction on travel or trading dur to Covid-19 containment measures, however there are likely still some latent impacts that may impact "typical" travel behaviour. Noting this, it is recommended that further surveys and analysis be undertaken on a 12-18 month basis to ensure that the conclusions drawn are based on suitable data.

Appendix A Camp Street / Mountbatten Avenue Functional Plans

CAMP ST \& MOUNTBATTEN AVE INTERSECTION REALIGNMENT

GAVAN STREET, BRIGHT, VIC, 3741

DRAWING LIST
EENERAL NOTES
ALPS74-102 - EXISTING CONDITIONS (SHEET 1)
ALPS74-103 - EXISTING CONDITIONS (SHEET
ALPST4-104 - PROPOSED DESIGN (SHEET 1)
ALPS74-106 - PROPOSED DESIGN (SHEET
ALPS74-107 - SETOUT PLAN (SHEET 2)
ALPS74-108 - KERB DETAILS
ALPS74-110 - PEDESTRIAN REFUGE AND SIGNAGE

GENERAL

CHESE SIRUCUTUAL DRAMNGS HANE BEEN PREPARED IN ACCoroance CONSLLTANTS DRAWMGS, SPEEFICCATONS AND SUCH OHHER WITHEN INSTRUCTIONS AS MAY' bE ISSUED DURNG THE COURSE OF THE Coniract. AMY IIScREPANCY SHaLL be refered to the engneer
c2 detal notes on these dramngs and the spgifcaton clauses
 CHE RLEVANT CURRENT STANOAROS AUSIRALAA COOES ANO WTH THE austalla
64 Unless noted othermse all levels are in metres and all omensons are in mlimetres.
THE METHOD OE CONSTPUCTION AND THETY OTENANCE OC SAFETY OURING CONSTRUCTION IS THE RESPONSIBLITY OF THE CONTRACTOR. Constructabluty or safety Tue water shat be pesfect the engineer for resolution before proceeding wth the work

PAVEMENT

ROAD SHOULDER PAVEMENT TO INFRASTRUCTURE DESIGN MANUAL
pavement design:
SUB-GRADE COMPACTED To 98% MMDD
SUB-BASE 150 THK VCROADS CLASS 2 CRUSHED ROCK TO 98%
BASE 200 THK VCROADS CLASS 1 CRUSHED ROCK TO 98% MMDD
KERB

1. REFER To As. $2876-2000$ concrete kerbs and channels for

K2. CONCRETE SHALL be normal class n25 Standard strength grade
 CONCRETE TO BE USED IN

K3. BEDDING TO BE COMPACTED CLASS 3 F.C.R. 20 mm BEDDING TO 97% KJ. BEDING
MDD OR EXTENSION OM ROAD PAVEMENT, WHICHEVER IS GREATER. UNLESS
OTHERWISE DIRECTED.
K4. concrete to be smooth trowelled finished on tray and kerb.
K5. CONCRETE SPONGE FINISHED ON LAYBACK.
k6. construction joints located: 75 mm (MIN) DEPTH.
2. Elminate bullnose on all positive fall pedestrian crossings,

SIGNPOSTING \& PAVEMENT MARKING
SIGNPOSTING AND PAVEMENT MARKING TO COMPLY WTH AS1742 PARTS
$1-15$ AND THE VICROADS TRAFFIC ENGIEERING MANUAL volumes AND 2.
Sp2 road marking shall be carried out to the extents shown on The drawnos. Palit shall be white, 'TYPE 3' class a complying WTH THE REQUIREMENTS OF AS K146-196

STORMWATER DRAINAGE

stormwater drainage by others. Layout shown on dramngs

ARTHWORKS

ALL WORK TO BE IN ACcordance with the current edition as CUT TO LEVEL OF TOP OF SUBGRADE. PROOF ROLL ALL EXPOSEED
SUBGRADE AND REPLACE SOFT OR SPONGY AREAS AS PER FEIL NOTS SUBGRade And REPLACE SOFT OR SPONGY AREAS AS PER FLLL NOTES Elow, Cown her
IN FILL AREAS- CUT AND REMOVE VEGETATION AND STRP TOPSOLL
PROOF ROLL EXPOSED SUBGRADE AND REPLACE SOFT OR SPONGY PROOF ROLL EXPOSED SUBGRADE AND REPLACE SOFT OR SPONG
AREAS, AS DIRECTED BY THE ENIIEER. PLACE AND COMPACT NE FILL IN 200 mm MAX THCC LAYERS, AT MOISTURE CONTENT IN RANGE DF O TO $\pm 2 \%$ OF OPTMUM (AS PER AS1289.5.2.1) AND COMPACT IN
ACCORDANCE WTH THE FOLLOWNG TABLE U.N.O. TEST COMPACTED

Prouect type	MIIMUM COMPACTION	
	MAX. DRY DENSITY RATIO (COHESIVE SOILS) AS1 289.5.1.1	minimum density index (COHESIONLESS SOILS)
COMMERCIAL /	98\% MODFIED	80

FILL MATERIAL TO BE AS SPECIFIED in AS3798 CLAUSE 4.4 AND FIELD DENSITY TESTS SHALL BE NOT LESS THAN 1 TEST PER 200 m 3 OF PLACED MATERIAL. TESTS IN VISUALLY DOUBTFUL AREAS AN
RETESTS OF FALED AREAS ARE ADDITINAL TO THE TESTING SPECFIFED ABoVE. ALL TESTING, TNCLUDING RETESTING, IS TO BE CARRIED OUT BY AN APPROVED AUTHORTY AND IS To BE ARRANGED BY THE
CONTRACTOR AT THE CONTRACTOR'S EXPENSE
TEST Rolling shall be in accordance with as 3798 Clause 5.5 TEST ROLLING SHALL BE 4 PASSES OF A 12.0 t MINIMUM SMOOT
STEEL WHEELED VBRATORY ROLLER WITH A LOAD INTENSITY UNDE EITHER THE FRONT OR REAR WHEELS of $6.0 \mathrm{t} / \mathrm{m}$ MiN
Top sol:
The contractor shall place topsoll, prevously strpped, on any areas disturbed by the contractor's operations, TO THE DETALLS SHOWN ON THE DRAWINGS OR OTHERWSE ROCK FRAGMENTS LARGER THAN 50 mm IN SIZE, AND TREE ROOTS LARGER THAN 20 mm IN DIAMEEER OR 300 mm IN LENGTH SHAL
topsoll shall be spread over areas to acheve 100 mm MINMUM COMPACTED THICKNESS MEASURED NORMAL TO SLOPE ORDER TO REINSTATE THE ORIGINAL GROUND PROFILE. TOPSOL

CONCRETE

ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WTH THE
CURRENT EDTITN OF ASSBOO INCLUODNG AMENOMENT, EXCEPT WHERE MARED BY THE CONTRACT DOCUMENTS.
PEADYMIX Concrete supply shall comply wit asi 137 .
concerte ounity

ELLemENT	GRADE	SLUMP (mm)	MAX AGG. (IIEE (mm)	CEMENT TTPE
FOOTPATH	N25	150	10	GP
KERB \& CHANNEL	N25	80	20	GP

PROUECT CONTROL TESTING SHALL BE CARRIED OUT IN ACCORDANCE WITH
ASIO12, AS1379 \& AS3600.
no admixtures contanng chlorides shall be used
CLEAR CONCRETE COVER TO ALL REIN FRRCEMENT FOR DURABLITY SHALL BE
AS FOLOWS, UNLESS SHOWN OTHERMSE ON THE ORAWINGS:

CONCRETE (cont')

CONCRETE SIZES SHOWN DO NOT INCLUDE THICKNESSES OF APPLIEO
EINSHES.

No HOLES, CHASES OR EMBEDMENT OF PIPES OTHER THAN THOSE SHOWN
ON THE STRUCTURAL DRAWNGS SHALL BE MADE IN CONCRETE MEMEERS WTHOUT THE PRIOR WRITTEN APPROVAL OF THE ENGINEER.
WHERE NOT SHown on THE STRUCTURAL DRAWNSS Construction Jonts
SHALL BE LOCATED TO THE APPROVAL OF THE ENGIEER.
CONOUTS, PIPES ETC. SHALL ONLY BE LOCATED IN THE MDDLE ONE THRD
OF SLAB DEPTH AND SPACED AT NOT LESS THAN 3 DIAMEERES. PIPES OR ConDU ITS SHAL
RENNOREEMENT.
SLABS AND beAMs shall be constructed to bear only on the beams,
WAlls, columns, ETC. shown on The structueal drawngs. All OTHE

REINFRCEMENT SHALL BE SUPPORTED ON PURPOSE MADE CONCRETE, STEEL OR PLASTIC SUPPORTS (OEPENOING ON THE EXPOSURE CONDITION)
PROVIDE THE SPECIFED CLEAR COVER. AT EXTERNAL SURFACES ETTHER ALI PLASTIC OR CONCRETE SUPPORTS SHALL BE USED.
SUPPORTS SHALL BE LOCATED AT NOT MORE THAN 60 bar dameters
EACH WAY FOR BARS \& NO MORE THAN 750 mm EACH WAY FOR MESH. reinforcement stmbols - bars

R - ROUND
$\mathrm{D}-\mathrm{DEFORMED}$
D - DEFFRMED
$1-$ NNENTED
250, 300 , 500 - STRENGTH GRADE IN MPo

- LOW DUCTLTY

N- NORMAL DUCTLTTY eq. D50ON16-DEFORMED BAR, GR. 500 , NORMAL DUCTUIT, 916 mm 15 renforcement stmbols - welded mesh

R, D, I AS AOR BARS
500 - STRENGH GRADE
S/R - Square mesh / rectangular mesh
L. N - DUCTLITY AS FOR BARS
bars denoted n shall be tTpe dsoon
BARS CENOTEO R SHALL BE TYPE R250N.
MESH DENOTED SLL....... OR RL.......SHALL BE TYPE D500sL OR TYP
O5OORL RESPECTIVELY. TRENCH MESH SHALL BE TYPE D500L

THE FIGURE FOLLOWNG THE MESH STMBOLS RL...... SL.... OR L....... IS THE
REFERENCE NUMEER FOR MESH IN ACCORDANCE WITH ASA671..
 LOATED WTHAN 3 PARALLEL RUNS OF THE RENFORCING SONTANED

ole prescrbeo il assoon
20 RENFORCEMENT IS REPRESENTED DIAGRAMMATCALLY AND NOT NECESSARLL
IN TRUE PROUECTIN.
1 SLAB REINFORCEMENT SHALL EXTEND AT LEAST 65 mm onto masonr
C22 Welong of reinforcement shall not be permited unless shown on
THE STRUCTURAL orawncs or Aproved by The encineer,
23 AT Jogles in bars, the maximu offset shall be 1 bar dameter
OVEr a length of 12 bar diameters.
24 REIFFORCEMENT COUPLERS, UNLESS SHown on the dramngs, shall not
be USED WTHOUT APPROVAL BY THE ENGNEER.

CONCRETE (cont')

 VERTICAL ALIGNMENT ± 2 DEGREES FROM LEVEL
HorIzontal alignent ± 2 DEGREES FROM A LINE PERPEnolcular

$$
\begin{aligned}
& \text { To The Face of it } \\
& \text { Position } \pm 5 \mathrm{~m}
\end{aligned}
$$

28 constevction sup
 NARTION WALLS ARE TO BE CONSTRUCTED ON SUSPENDED LEVELS

C29 Exposed internal and external corners of concrete shall be

 WTHIN 2 IHRS OF THE CONCRETE HAVING BEE PLACED OR MECHANICAL
SCABBLING OF THE JONT WLL BE REQURED. CONSTRUCTION JONTS SHALL BE AITTED WTH WATERBAR AND HYROTTE AS
PRE THE ORWNINS AND ISTILLED STRCTLY IN ACCORDANCE WTH THE VSIBLE FORMED SURFACES SHALL USE CLASS 3 FORWWORK WTH COLOUR
CONTROL NON-VSIBEE FORMED SURFACES SHALL USE CLASS 5 Foruwork WTH
NON-COLOUR CONTROL IN ACCORDANCE WTH AS3610.1.
C32 Foruwork TE HOLES ARE TO BE ROUGHENED AND FLLED WTH EPREZ 633
EPOXY OR EOUIVALENT AND GROUND FIUSH.
C33 UNLESS NOTED OTHERWSE ON THE DRAWNG THE FOLLOWNG FINSHES
SHALL APPLY TO UNFORMED CONCRETE SURFACES:
FINSH U - WOOD FLOATED FINSH
TOPS OF COVERED FOOTINGS AND PEDESTALS UNDER Grout. A WOOD FLOATED FINSH TO PRODUCE A UNIFORM SURFACE WTHOUT
SURFACE PITTING OR CAVTIES. waximum allowable surface irregularites:
SMM Abrupt or 15 mm OVER A 3 m STRAIGHT EDGE
FINSH U3 - STEEL TROWELLED FINSH
TOPS OF EXPOSED FOOTNGS, SLABS, WALLS, STAR TREADS AND
A HIGH QuALITY MECHANCAL STEEL TROWELLED FINSH HAVING A
DENSE IMPERVIOUS FNNSH WTHOUT SURFACE PITTING OR CAVIIES. MAXIMUM ALLOWABLE SURFACE IRREGLLARTITES:
2 mm ABRUPT OR $5 M M$ In A 3 m TEMPLATE
NOTE: ALL U3 TRAFFICABLE SLABS AND FOUNDATONS SHALL BE LIGHTLY
BROOMED AFTER FOWER TROWELING TO ACHIVE A NON-SLIP SURFACE.
 C35 A MINMUM OF 24 HOURS NOTCE IS IT IN BE GIVEN TO THE ENGINEER FOR

REVISIONS			REVISIONS			Designed	s.p	11/20	(N)
No.	detals		No	detals	DATE	Drown	0.B	11/20	
A.		${ }^{19 / 06 / 20} 16 / 1 / 20$				Checked			
						Approved			

	ALPS-74	ALPINE SHIRE COUNCIL
ENGINEERING SERVICES	DRAWING No.	GAVAN ST, BRIGHT, VIC, 3741
Civil, Structural, Mining \& Mechanical Engineering	ALPS74-101	INTERSECTION REALIGNMENTS
OAD BRIGT VIC 3741	UM ${ }_{\text {AHD }}$ \|GR10	GENERAL NOTES

REVISIONS			REVISIONS			Designed	s.P	11/20	(N)
No.	detals	$\begin{aligned} & \text { DATE } \\ & 19 / 06 / 20 \\ & 02 / 09 / 20 \end{aligned}$	No.	delals	DATE	Checked			
A.	PRELIMINARY ISUE								
$\stackrel{8}{0 .}$	ISSUEED FOR CONSTRUCTION					App			
						1:200 (A1) 0^{-}			

FロRESIGHT engineering services

 ${ }^{9 / 2}$ STAR ROAD BRIIGHV IVC Phone: 0357555175ALPS-74 ALPINE SHIRE COUNCIL

ALPS74-103

SYMBOLS		
\bigcirc		(5) Existing sewer pit
-	post/bollaro	- new sewer pit
${ }^{8}$	new bollaro	$\square^{\text {PP }}$ TELSta PIT
\triangle	Exsting stormwater pit	$\bigcirc^{\text {LP }}$ LIGHT POLE
\square	new stormwater pit	- sign
${ }_{\text {VV }}^{\text {S }}$	stop valve	- Permanent surver mark
吕	hyorant	- instrument station
\cdots	water meter	$\Gamma^{\text {control pont }}$
\bigcirc	water tap	(c) Electrictir pit
∞		\square Phone box

- new concrete footpath

D/AA - new asphalt pavemen

POINT TABLE				
POINT \#	EASTING	NORTHING	RL	DESCRIPTION
1	496670.419	5935462.750	303.960	CP
2	496670.728	5935458.762	304.020	CP
3	496677.664	5935453.831	MEL	EOB
4	496680.888	5935460.553	MEL	EOB
5	496681.500	5935461.658	MEL	EOB
6	496682.107	5935462.654	MEL	EOB
7	496692.682	5935467.590	MEL	TOC
8	496694.562	5935468.368	MEL	TOC
9	496694.400	5935470.416	MEL	EOB
10	496692.163	5935469.959	MEL	EOB
11	496694.144	5935470.379	MEL	EOB
12	496700.686	5935471.277	MEL	EOB
13	496690.912	5935474.957	303.965	CP
14	496694.907	5935475.157	304.100	CP
15	496691.686	5935479.501	MEL	EOB
16	496693.684	5935479.601	MEL	EOB
17	496691.480	5935483.633	MEL	TOC
18	496693.479	5935483.697	MEL	TOC
85	496682.387	5935459.935	MEL	TOC
86	496683.734	5935461.472	MEL	TOC

FロRESIGHT ENGINEERING SERVICES

ALPS-74 RAWING No.

REVIIIONS			REVISIONS			Designed	S.P	11/20	(N)
No.	DETAILS PRELIMINARY ISSUE ISSUED FOR CONSTRUCTION	$\begin{aligned} & \text { DATE } \\ & \begin{array}{l} 19 / 06 / 20 \\ 16 / 11 / 20 \end{array} \end{aligned}$	No.	detals	DATE	Drawn	0. ${ }^{\text {a }}$	11/20	
A. 0.						Checked			
						Approved			

$\underset{\substack{\text { ENGINEERING SERVICES } \\ \text { Civil) Structural, Mining \& Mechanical Engineering } \\ \text { Phone: } 035755 \\ \text { ROAD } \\ \text { BRIGHT vic } \\ 37741}}{\text { E }}$
ALPS-74
ALPINE SHIRE COUNCIL

9/2 STAR ROAD BRIGHT VIC 3741
email :info@foresightengineering.comau

ALPS74-107

F■RESIGHT

$\frac{\text { TYPICAL }}{\text { SCAEE 1.50 }}$ PEDESTRIAN REFUGE LAYOUT - INTERSECTION

$\frac{\text { TYPIICAL PEDESTRIAN REFUGE LAYOUT - THROUGH ROAD }}{\text { SCAIE } 1.50}$

1 DETALL - TYPICAL PEDESTRIAN REFUGE

2 DETAIL - TYPICAL PEDESTRIAN REFUGE
(D) SECTION - TYPICAL PEDESTRIAN REFUGE
\square

Appendix B GTA/Stantec/DoT Bicycle Infrastructure Functional Designs

GREAT ALPINE ROAD, BRIGHT

BRIGHT ON ROAD BICYCLE
 INFRASTRUCTURE

PACKAGE
FUNCTIONAL DESIGN

DEscineo н. stevenson	IESGOCHECKK
Dramw	DRATING CHECK
H. Stevenson	-
APPRoVEEBY	DATE APPROVED FOR INITIAL ISSUE 30 AUGUST 2021

now
Stantec
$\frac{\text { FRONT COVER }}{\text { MAPREE }}$
GREAT ALPINE ROAD
ON ROAD BICYCLE INFRASTRUCTURE

BRIGH
V205441-BRI-02-01
$\begin{array}{ll}\text { SHEET } \\ 01 \text { OF } 11 & \text { ISSUE } \\ \text { P2 }\end{array}$

Appendix C Movement \& Place Classifications

Figure 28 Movement \& Place Classification - Movement

Figure 29 Movement \& Place Classification - Walking

Figure 30 Movement \& Place Classification -Freight

Figure 31 Movement \& Place Classification-General Traffic

Figure 32 Movement \& Place Classification -Tourism Route

Figure 33 Movement \& Place Classification - Places of Street Activity

Figure 34 Movement \& Place Classification - Places of Off-Street Activity

Appendix D Movement \& Place Technical Appendix

Network Classifications

Module 1

Network Classifications

Module 1 of the Movement \& Place Framework assigns future strategic visions for movement and place to the transport network. Strategic vision is based on State-level transport and land use planning strategies.

The road network is divided into transport links and each link is assigned a movement and place Network Classification, to define the strategic vision for that link.

There are five levels of Network Classification and these make up a system for describing strategic functionality and significance. The five levels of Network Classification are defined in the table below:

Classification Level	Classification Definition
Classification Level 1	Mass movement of people and/or goods on routes with a State or National level movement function or primary access to a State level place. Associated with Place of $\underline{\text { State or National significance and associated. }}$
Classification Level 2	Significant movement of people and/or goods on routes connecting across multiple municipalities or primary access to Regional level places. Associated with Place of $\underline{\text { Regional significance }}$
Classification Level 3	Moderate movement of people and/or goods on routes connecting municipalities or primary access to $\underline{\text { Municipal level places. }}$ Associated with Place of $\underline{\text { Municipal significance }}$
Classification Level 4	Movement of people and/or goods within a municipality Associated with Place of $\underline{\text { Neighbourhood importance }}$
Classification Level 5	Aocal movement

Aligning the classifications for movement and place using this structure:

- provides consistent terminology to describe strategic intent
- introduces a mindset to understand the functionality of transport links with respect to place and movement
- can assist in discussions relating to the strategic vision for modes on the network

Module 1 - Network Classifications also allows us to apply classifications for the other two themes, Safety and Environment.

Place Classifications

Overall Place Classifications

Place (P)	Definition	Mapping
P1	Place of State or National significance	PA1, PO1
P2	Place of Regional significance	PA2, PO2
P3	Place of Municipal significance	PA3, PO3
P4	Place of Neighbourhood importance	PA4, PO4
P5	Place of Local importance	PA5

Metropolitan Places of Activity (PA)

Both Planning Scheme Zone and Geographical Boundary apply to the rule to each definition. It should be noted that Road Zone Category 1 (RDZ1) and Road Zone Category 2 (RDZ2) are mapped as the highest order adjacent zone. The Metropolitan Places of Street Activity are mapped within the Urban Growth Boundary, not by VicRoads or Transport for Victoria geographical regions.

Metropolitan Places					
Places of Street Activity (PA)	Definition	Mapping			
		Planning Scheme Zones	Geographical Boundary		
PA1	Nationally and state significant place of activity. People travel from across the country and state to experience and use the place. The place has a very large number of on- street staying activities e.g. shops and alfresco dining.	Capital City Zone (CCZ) (Schedule 1-6) and, Docklands Zone (DZ) (Schedule 1-3), including Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone Recreation Zone (PPRZ) within CCZ \& DZ zoned areas,	N/A. Zoning extents and as noted adjacent		
PA2	Regionally significant place of activity. People travel from adjoining municipalities to experience and use the place. The place has a large number of on-street	Activity Centre Zone (ACZ), Commercial 1 Zone (C1Z), Mixed Use Zone (MUZ), Comprehensive	Metropolitan Activity Development Zone (CDZ), Priority Development Zone (PDZ), Residential Growth Zone, Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone 		Melbourne)
:---					
Or					

	staying activities e.g. shops and alfresco dining.	Community), Public Use Zone Schedule 6 (PUZ6) (Local Government), Public Use Zone Schedule 7 (Other Public Use) (PUZ7) and Public Park \& Recreation Zone (PPRZ)	Innovation Clusters (NEIC)
РАЗ	Municipal level of significant place of activity. People travel from across the municipality to experience and use the place. The place has visible on-street staying activities such as public seating and alfresco dining.	Activity Centre Zone (ACZ), Commercial 1 Zone (C1Z), Mixed Use Zone (MUZ), Comprehensive Development Zone (CDZ), Residential Growth Zone (RGZ), Priority Development Zone (PDZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone Schedule 3 (PUZ3) (Health \& Community), Public Use Zone Schedule 6 (PUZ6) (Local Government), Public Use Zone Schedule 7 (Other Public Use) (PUZ7) and Public Park \& Recreation Zone (PPRZ),	Major Activity Centres (500 metre radius from Plan Melbourne defined point)
PA4	Neighbourhood level of significant place of activity, serving people from immediate neighbourhoods, e.g. milkbars and local shops.	Activity Centre Zone (ACZ), Commercial 1 Zone (C1Z), Commercial 2 Zone (C2Z), Residential Growth Zone (RGZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone Schedule 3 (PUZ3) (Health \& Community),	All remaining zoning as noted in areas outside of P1, P2 and P3 areas.
PA5	Local level of significant place of activity. Places are generally quiet and a destination for people accessing residential properties	Urban Growth Zone (UGZ), Rural Activity Zone (RAZ), General Resident Zone (GRZ), Neighbourhood Residential Zone (NRZ) Low Density Residential Zone (LDRZ), Rural Living Zone (RLZ), Township Zone (TZ), Mixed Use Zone (MUZ), Green Wedge Zone (GWZ), Green Wedge A Zone (GWAZ), Rural Conservation Zone (RCZ), Farming Zone (FZ), Residential Activity Zone (RAZ), Public Use Zone - Schedule 5 (Cemetery/Crematorium) Public Use Zone - Schedule 6 (PUZ6) (Local Government), Public Use Zone - Schedule 7 (Other Public Use) (PUZ7) and Public Park \& Recreation Zone (PPRZ)	All remaining zoning areas as noted outside of P1, P2, P3 and P4 areas.

Note that the following layers have not been mapped: Industrial 1 Zone (IN1Z), Industrial 2 Zone (IN2Z), Industrial 3 Zone (IN3Z), Special Use Zone (SUZ), Port Zone (PZ), Public Use Zone Schedule 1 (Service \& Utilities), Urban Floodway Zone (UFZ).

Regional Places of Activity (PA)

Both Planning Scheme Zone and Geographical Boundary apply to the rule to each definition. It should be noted that Road Zone Category 1 (RDZ1) and Road Zone Category 2 (RDZ2) are mapped as the highest order adjacent zone. The Regional Places for People are mapped as outside Urban Growth Boundary, not by VicRoads or Transport for Victoria geographical regions.

Regional Places			
Places of Street Activity (PA)	Definition	Mapping	
		Planning Scheme Zone	Geographical Boundary
PA1	State significant place of activity. People travel from across the country and state to experience and use the place. The place has a very large number of on-street staying activities e.g. shops and alfresco dining.	Activity Centre Zone (ACZ), Commercial 1 Zone (C1Z), Mixed Use Zone (MUZ), Comprehensive Development Zone (CDZ), Priority Development Zone (PDZ), Residential Growth Zone (RGZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Recreation Zone (PPRZ) with CCZ \& DZ zoned areas	In Centre (1km Radius) of Urban Locality of Geelong, Bendigo and Ballarat
PA2	Regionally significant place of activity. People travel from adjoining municipalities to experience and use the place. The place has a large number of on-street staying activities e.g. shops and alfresco dining.	Activity Centre Zone (ACZ), Commercial 1 Zone (C1Z), Mixed Use Zone (MUZ), Special Use Zone (SUZ), Comprehensive Development Zone (CDZ), Priority Development Zone (PDZ), Residential Growth Zone (RGZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Community), Public Use Zone (PUZ7) (Other Public Use), Public Park \& Recreation Zone (PPRZ)	In Centre (500m Radius) of Urban Locality of Shepparton, AlburyWodonga (Wodonga part), Mildura-Buronga (Mildura Part), Warnambool, Traralgon, Wangaratta, Morwell
PA3	Municipal level of significant place of activity. People travel from across the municipality to experience and use the place. The place has visible on-street staying activities such as public seating and alfresco dining.	Activity Centre Zone (ACZ) (Schedule 1-3), Commercial 1 Zone (C1Z), Mixed Use Zone (MUZ), Special Use Zone (SUZ), Comprehensive Development Zone (CDZ), Priority Development Zone (PDZ), Residential Growth Zone (RGZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone Schedule 3 (PUZ3) (Health \& Community), Public Use Zone (PUZ7) (Other	In Centre (500m Radius) of Urban Locality of Ocean Grove-Barwon Heads, Bacchus Marsh, Torquay-Jan Juc, Horsham, MoeNewborough, Warragul, Sale, Lara, Bairnsdale, Echuca-Moama (Echuca Part), Drysdale-Clifton Springs, Colac, Drouin, Leopold, Swan Hill,

		Public Use) Public Park \& Recreation Zone (PPRZ)	Portland, Castlemaine, Gisborne, Benalla, Hamilton, Wallan, Healesville, Wonthaggi, Yarrawonga-Mulwala (Yarrawonga Part), Maryborough, Kilmore, Ararat, Portarlington-St. Leonards, Lakes Entrance, Kyabram, Seymour, Stawell, Cobram, Leongatha, Inverloch
PA4	Neighbourhood level of significant place of activity, serving people from immediate neighbourhoods, e.g. milk bars and local shops.	Commercial 1 Zone (C1Z), Commercial 2 Zone (C2Z). Mixed Use Zone (MUZ), Comprehensive Development Zone (CDZ), Priority Development Zone (PDZ), Regional Growth Zone (RGZ), Public Use Zone Schedule 2 (PUZ2) (Education), Public Use Zone Schedule 3 (PUZ3) (Health \& Community)	All remaining zoning areas outside of P1, P2 and P3 areas.
PA5	Local level of significant place of activity. Places are generally quiet and a destination for people accessing residential/rural properties.	Urban Growth Zone (UGZ), Rural Activity Zone (RAZ), General Resident Zone (GRZ), Neighbourhood Residential Zone (NRZ), Low Density Residential Zone (LDRZ), Rural Living Zone (RLZ), Green Wedge Zone (GWZ), Green Wedge A Zone (GWAZ), Rural Conservation Zone (RCZ), Farming Zone (FZ), Residential Activity Zone (RAZ), Public Use Zone - Schedule 5 (Cemetery/Crematorium) Public Use Zone - Schedule 6 (PUZ6) (Local Government), Public Use Zone - Schedule 7 (Other Public Use), Public Park \& Recreation Zone (PPRZ)	All other areas

Note that the following layers have not been mapped: City Centre Zone (CCZ), Docklands Zone (DZ), Industrial 1 Zone (IN1Z), Industrial 2 Zone (IN2Z), Industrial 3 Zone (IN3Z), Special Use Zone (SUZ), Port Zone (PZ), Public Use Zone - Schedule 1 (Service \& Utilities), Public Use Zone (PUZ4) (Transport), Public Conservation \& Resource Zone (PCRZ), Urban Floodway Zone (UFZ)

Places of Off-Street Activity (PO)

Places of off-street activity are defined below. Where a road has multiple valid place classifications, the higher overall place classification is applied.

| Places of Off-
 Street Activity
 (PO) | Definition | Automatic
 Mapping Based
 on Zoning | Other Mapping Rules
 (PO classification will be the highest trigger taken
 from the table below) | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Applying Land Use Zones

Applying place classifications by planning scheme zones are listed below.

Planning Scheme Zone		Mapping
Residential Zones	PA5 (metro and regional)	
Low Density Residential Zone (LDRZ)	 regional)	
Mixed Use Zone (MUZ)	 regional)	
Township Zone (TZ)	 regional)	
Residential Growth Zone (RGZ)	PA5 (metro \& rural)	
General Residential Zone (GRZ)	PA5 (metro \& rural)	
Neighbourhood Residential Zone (NRZ)		

Industrial Zones	
Industrial 1 Zone (IN1Z)	PO4
Industrial 2 Zone (IN2Z)	PO3
Industrial 3 Zone (IN3)	PO4
Commercial Zones	
Commercial 1 Zone (C1Z)	PA1 (regional where geographical boundaries apply), PA2 (metro \& regional where geographical boundaries apply), PA3 (metro \& regional where geographical boundaries apply) PA4 (Metro \& regional) for links greater than 200m
Commercial 2 Zone (C2Z)	PA4 (metro \& regional)
Rural Zones	
Rural Living Zone (RLZ)	PA5 (metro \& regional)
Green Wedge Zone (GWZ)	PA5 (metro \& regional)
Green Wedge A Zone (GWAZ)	PA5 (metro \& regional)
Rural Conservation Zone (RCZ)	PA5 (metro \& regional)
Farming Zone (FZ)	PA5 (metro \& regional)
Rural Activity Zone	PA5 (metro \& regional)
Public Land Zones	
Public Use Zone - Schedule 1 (Service \& Utility) (PUZ1)	Not mapped in PA
Public Use Zone - Schedule 2 (Education) (PUZ2)	PA1 (metro within nominated zoning area, regional where geographical boundaries apply), PA2 (metro \& regional where geographical boundaries apply) PA3 (metro \& regional where geographical boundaries apply) PA4 (Metro \& regional)
Public Use Zone - Schedule 3 (Health and Community) (PUZ3)	PA1 (metro within nominated zoning area \& regional where geographical boundaries apply)

PA2 (metro and regional where geographical boundaries apply) PA3 (metro and regional where geographical boundaries apply) PA4 (Metro and regional)

Public Use Zone - Schedule 4 (Transport) (PUZ4)	Not currently mapped in PA
Public Use Zone - Schedule 5 (Cemetery/Crematorium) (PUZ5)	PA5 (Metro \& Regional)
Public Use Zone - Schedule 6 (Local Government) (PUZ6)	PA5 (Metro \& regional)
Public Use Zone - Schedule 7 (Other Public Use)	PA1 (metro within nominated zoning area and regional where geographical boundaries apply)
PA2 (metro \& regional where geographical boundaries apply)	
Public Park \& Recreation Zone (PPRZ) (metro \& rural where geographical boundaries apply)	
PA5 (Metro \& regional)	
Public Conservation \& Resource Zone (PCRZ)	PA1 (metro within nominated zoning area and regional where geographical boundaries apply) PA2 (metro \& regional where geographical boundaries apply)
PA3 (metro \& rural where geographical boundaries apply)	
PA5 (metro \& region)	

Special Purpose Zone	Not mapped but special exceptions apply to map as PA and/or PO
Special Use Zone (SUZ)	PA1 (regional where geographical boundaries apply), PA2 (metro \& regional where geographical boundaries apply), PA3 (metro \& rural where geographical boundaries apply) PA4 (metro \& regional)
Comprehensive Development Zone (CDZ)	

Priority Development Zone (PDZ)	PA1 (regional, geographical boundaries apply) PA2 (metro and rural where geographical boundaries apply) PA3 (metro \& rural where geographical boundaries apply) PA4 (metro \& regional)
Urban Growth Zone (UGZ)	PA5 (metro \& rural)
Activity Centre Zone (ACZ)	PA1 (regional where geographical boundaries apply) PA2 (metro \& where geographical boundaries apply) PA3 (metro \& regional where geographical boundaries apply) PA4 (metro \& regional)
Port Zone (PZ)	PO1
Urban Flood Zone	CR1
Industrial Zones	
Industrial 1 Zone (IN1Z)	PO4
Industrial 2 Zone (IN2Z)	PO3
Industrial 3 Zone (IN3Z)	PO4

Movement Classification

Overall Movement Classifications

Movement (M)	Definition	Modal classifications
M1	Mass movement of people \&/or goods on routes with a State or National level movement function or primary access to a State level place.	GT1, R1, T1, B1, F1
M2	Significant movement of people \&/or goods on routes connecting across multiple municipalities or primary access to Regional level places.	GT2, T2, B2, F2
M3	Moderate movement of people \&/or goods on routes connecting municipalities or primary access to Municipal level places.	GT3, T3, B3, F3, C1, W1
M4	Movement of people \&/or goods within a municipality	GT4, B4, F3, FS, C2, W2
M5	Local movement	GT5, C3-5, B5, W3-5

Active Transport - Walking

Classification	Definition	Principle mapping description	Proxy mapping rules

W2	Regionally significant walking links in close proximity to key activity generators with existing and/or potential demand. This includes strip shopping, educational institutions, railway stations and employment precincts.	PPN routes typically around 400 m of primary walking destinations including all stations and other I1-I3 interchanges, and P1-P3 destinations including educational institutions, strip shopping and other major trip generators such as employment precincts and hospitals	Routes providing access to all railway stations and $\mathrm{I} 1-\mathrm{I} 3$ (2051) bus and tram stops, and P1-P3 places within 400 m that are NOT 'freeways', NOT part of offroad links like railway, cycling, tram, NOT have movement GT classification = 'GT5', NOT already assigned a walking classification
W3	Municipal walking links that support pedestrian movements to and around activity generators such as activity centres, schools and transport interchanges. These routes capture the complete Principal Pedestrian Network and support Plan Melbourne's 20-minute neighbourhood principle.	All other PPN routes, including routes to all interchanges, educational institutions, strip shopping and major trip generators such as employment precincts and hospitals. This covers all key walking routes within the 20minute neighbourhood principle.	Routes providing access to all I classifications and P1P4 places within 2 km that are NOT 'freeways', NOT part of off-road links like railway, cycling, tram, NOT have movement GT classification = 'GT5’, NOT already assigned a walking classification
W4	Neighbourhood walking links, providing important connections to the Principal Pedestrian Network, supporting the complete walking journey. These links are mainly residential streets.	Balance of pedestrian network (i.e. all routes within a PPN catchment that are not identified as PPN)	GT5 and local roads within 2km of P1-P5; NOT already assigned a walking classification
W5	The balance of the pedestrian network, covering all local walking links.	All other walkable routes outside of PPN catchment (i.e. greater than 2 km from activity), providing a minimum pedestrian requirement.	All other roads that are NOT 'freeways'; NOT already have a walking classification assigned
WR	Routes identified for walking for recreation. Routes usually located beside rivers, creeks and rail lines often shared facilities with cyclists.	Routes usually located beside rivers, creeks and rail lines mainly shared facilities with cyclists.	

Active Transport - Cycling

C1 and C2 classifications (SCCs) have been mapped. Mapping of the remaining classifications requires further consultation with local councils and stakeholders. In the interim, proxy mapping rules will be used to map Cycling classifications.

Cycling for Transport Classifications

C1	Primary routes provide a core network of Strategic Cycling Corridors that connect places of state significance - the central city, Metropolitan Activity Centres (MACs) and National Employment and Innovation Centres (NEICs) within metropolitan Melbourne.	Principal based mapping Strategic Cycling Corridor
C2	Main routes are Strategic Cycling Corridors that provide additional connections to state significant destinations, as well as connections to major activity centres and key railway stations within metropolitan Melbourne.	Principal based mapping Strategic Cycling Corridor
In regional towns, main routes provide the SCC network that connects to destinations of regional importance including activity areas, school and railway stations.	Municipal routes support mostly local, short trips to activity centres, including important links to stations and other interchanges. They also feed to C1 and C2 routes (SCCs).	Principal based mapping Municipal Cycling Plan
C3	Proxy C3 links are designated as PBN segments that are on the local road (GT4-5) network and not already mapped as a C1 or C2.	
C4	Neighbourhood and local links that make up the balance of the cyclable road network and provide short connections to C1-C3 routes and nearby activity centres.	Principal based mapping TBD
Not yet mapped		

Specialised Classifications

	Definitions	Mapping
CD	Direct cycling routes provide a more direct alternative route to C1-C2 routes. These routes are expected to be used by cyclists who are comfortable riding in higher traffic stress environments.	Principal based mapping TBD in consultation with LGAs Proxy TBD (SMEs to designate segments)
CH	High traffic stress routes make up the balance of the legally cyclable arterial road network (GT1-3).	Principal based mapping TBD Troxy GT1-3 segments that are not C1, C2 or CD Not yet mapped

CT	Training routes are designated routes used for training and sports cycling, mostly longer distances and at high speeds	Principal based mapping TBD (e.g. Popular Strava routes) Proxy N/A
Not yet mapped		

Public Transport - Interchange

	Definition	Mapping			
		Service Diversity (SD)	Catchment (CA)	Usage (US)	Special Function (SF)
11	State significant interchanges, the major focal points of public transport usage in Victoria with the highest levels of connectivity, service diversity and activity.	SD1 - Interchange point meets one or more:15+ train routes, 8+ regional rail routes, $10+$ tram routes, 30+ bus routes, 6+ regional coach, 3+ interstate rail and 1+ international air, and 3+ ferry (excludes a continuous corridor).	N/A	US1-25,000 or more people entering or interchanging on an average weekday in 2016; 35,000 in 2031 and 2051.	N/A
12	Regionally significant interchanges, attracting high numbers travellers from wide catchments to access a diversity of public transport services and/or regionally significant connections.	SD2 Interchange point meets one or more of: 6+ train routes, $6+$ regional rail routes, 4+ tram routes, 10+ bus routes, 4+ regional coach, 2+ interstate rail, or 2+ ferry (excludes a continuous corridor).	N/A	US2-10,000 or more people entering or interchanging on an average weekday (observed)	SF2 - Train to Train Interchange Hubs Special Events venues (very heavy demand at multiple times of year) Bus Tram SF2 Special Events venues (very heavy demand at multiple times of year, with a PO1 location connection)

	Definition	Mapping			
		Service Diversity (SD)	Catchment (CA)	Usage (US)	Special Function (SF)
13	Municipally significant interchanges, where the capacity, frequency and/or variety of services on offer attract travellers to them to access these connections from surrounding suburbs.	SD3 - Interchange point meets one or more of: 2+ train routes, 1+ regional rail routes, 2+ tram routes, $5+$ bus routes, $2+$ regional coach, 2+ interstate rail or 1+ ferry (excludes a continuous corridor).	CA3 - Rail see catchment table below (Catchment does not influence Tram or Bus)	US3-5,000 or more people entering or interchanging on an average weekday (observed)	SF3 - Tram to Tram Interchange Hubs Tram to SmartBus Interchange Hub Special Events venues (heavy demand at selected times) and tram route terminus
14	Neighbourhood public transport hubs. Travellers will connect here with higher frequency/capacity services or may travel from their local stop/area to access additional travel options.	SD4 - All rail stations and tram and bus stops on a B3/T3 or higher line segment.	CA4 - Rail see catchment table below (Catchment does not influence Tram or Bus)	US4-1,000 or more people entering or interchanging on an average weekday (observed)	SF4 -
15	Local public transport stops which serve as the nearest, walkable point of access to the network for travellers, but are unlikely to attract those from further away.	No other services provided. The station/stop is the only transport provision within a 350 m radius.	N/A	N/A	N/A
RC	Interchanges associated with Regional Coaches (with no connection to a passenger railway station).	N/A	N/A	N/A	N/A

Catchment Mapping				
Cycle Catchment Population >	16,300 or higher	11,100 to 16,300	4,500 to 11,100	0 to 4,500
\ldots				

Walk catchment population \vee				
$\mathbf{7 , 1 0 0}$ or higher	3	3	3	4
$\mathbf{4 , 5 0 0}$ to $\mathbf{7 , 1 0 0}$	3	3	3	4
2,800 to 4,500	3	3	4	4
$\mathbf{9 0 0}$ to 2,800	3	4	4	5
$\mathbf{0}$ to 900	4	4	5	5

Mapping Rules for Tram and Bus Interchanges are as follows:

- Apply to all bus/coach/tram stops, whether they form a multi-stop interchange or a single stop.
- All Tram/Bus stops are classified as I5, unless otherwise designated.
- Tram/Bus stops within 200m of a Rail Station are classified the same as that Rail Station.
- Else, the Tram/Bus stop is classified as the highest score of the 4 sub-classifications Service Diversity, Usage, Catchment, Special Function.
- Tram and bus stops (serving different routes) that are located within proximity to each other perform a combined interchange function and are therefore considered as a single interchange (i.e. stops within 100 metres of each other/ an overlapping radius, or buffer, of 50 metres).
Note: Mapping Currently only applies to interchanges that contain train stations.

Public Transport - Rail

Rail (R)	Definition
R1	Mass movement of people providing high frequency access to a high-level Places.

Public Transport - Tram and Bus

Tram (T) /Bus (B)	Definition	Mapping Indicative capacity and service frequency by tram or bus type
T1/B1	Mass movement of people by bus and tram to and through state significant places	Capacity: 1,800 per hour Trams/hr (by class) - E: 10+ (freq 6 mins or better) - B,C,F: 13+ (freq 4 mins or better) - A,Z: 30+ (freq 2 mins or better) Buses / hr: - $25+$ buses $/ \mathrm{hr}$

		- frequency 2 mins or better
T2/B2	Movement of people by higher frequency bus and tram to access higher order places	Capacity: 750-1,800 per hour Trams/hr (by class): - E: 4-9 (freq 7-15 mins) - B,C,F: 6-12 (freq 5-10 mins) - A,Z: $11-30$ (freq 2-6 mins) Buses/hr: - 11 - 25 (freq 2-6 mins)
T3/B3	Movement of people by moderate frequency bus and tram	Capacity: 250-750 per hour Trams/hr (by class): A,Z: 4-10 (freq 6-15 mins) Buses/hr: $4-10$ buses (freq 6-15 mins)
B4	Movement of people by lower frequency local bus	Capacity: $125-250$ Buses/hr: 2 - 3 buses (freq $20-30$ mins)
B5	Movement of people by low/irregular frequency bus	Capacity: 0-125 Buses/hr: 1 bus (freq 40 mins or less)

Note: Mapping only currently applied to metropolitan areas.

Freight (on-road)

Freight (F)	Definition	Mapping
F1	Mass movement of goods at high speed	All freeways and nationally significant routes on the PFN
F2	Routes that facilitate significant movement of goods where higher speeds are not achievable due to a constrained operating environment	Arterial roads on the PFN
F3	Freight access routes where provision for freight vehicles is important however freight is not a priority movement	Arterial network. Local B Double and HML network
FS	Special freight routes required for the movement of goods by unique freight vehicles	OD routes and OSOM routes

Where the following principles apply, it is likely that the road's freight (F) function matches its classification:

- F1 classifications support long distance, high value freight movements. They are intended to move large quantities of goods at higher speeds. Freight is a priority movement on these routes.
- FS routes do not support significant numbers of vehicle movements but are critical for the vehicles that do use them as there may be no alternative route.

Note: where there is a FS classification, there can also be an F1, F2, or F3 classification.

General Traffic

The General Traffic classifications are based on Motorways, the Arterial Road network and SmartRoads (superseded) Preferred Traffic Routes. These are shown in the table below.

General Traffic (GT)	Definition	Mapping
GT1	Mass movement of people by private vehicles on routes with a State or National level movement function or providing primary access to State level places (P1)	Melbourne: Freeways in Melbourne Regional: High Level Connectivity - Functional Classification
GT2	Significant movement of people by private vehicle on routes connecting multiple municipalities or providing primary access to Regional level places (P2)	Melbourne: Preferred Traffic Routes (and future Preferred Traffic Routes) Regional: Good Connectivity Functional Classification
GT3	Moderate movement of people by private vehicle on routes connecting municipalities or providing primary access to Municipal level places (P3)	Melbourne: Remaining arterial roads Regional: Moderate Connectivity Functional Classification
GT4	Movement of people by private vehicle within a municipality or providing primary access to Neighbourhood level places (P4)	Melbourne: Local Roads on Bus Priority Routes and Local roads on PBN. Regional: Arterial Connectivity
Functional Classification		

Other movements to be developed

Other movements that are currently not mapped include:

Tourist Route (not mapped)	TR1-TR3
Motorcyclist Touring (not mapped)	MTR1-MTR3
Emergency (not mapped)	EM1-EM3 (Refer to website)

Safety Classification

Road Safety Classification

Safety (S)	Definition
S1	An operating environment and transport system that do not result in death or serious injury as a consequence of errors on the roads.

Note: Not mapped just assumed to the whole network

Environment Classification

Biodiversity Classification

Biodiversity (BD)	Definition
BD1	Very High Biodiversity values of significant strategic importance or site values and strategic importance not known.
BD2	Very High biodiversity values with no particular strategic importance or site with significant non-indigenous vegetation or indigenous vegetation with strategically important rehabilitation potential.
BD3	No very high biodiversity values (including significant non-indigenous vegetation); site not strategically important for creating additional biodiversity values.
BD4	No native vegetation or no significant non-indigenous vegetation.

Note: Biodiversity classifications are not mapped they need to be determined at a project specific level

Biodiversity Classification Tool

*Native vegetation = plants that are indigenous to Victoria, including trees, shrubs, herbs and grasses, including dead trees.
\#Significant non-native vegetation can include trees, shrubs, herbs and grasses that provide important habitat or resources for native fauna species.
^ Examples of key stakeholders includes DELWP representatives, councils, CMAs and/or subject matter experts. Traditional Owners must be invited to contribute if they express an interest to do so. Community groups and community members should be consulted at this stage.

NOTE: Refer to the Movement \& Place Biodiversity Practice Note for more information

Appendix E Detailed SIDRA Outputs

Table 12 Intersection Performance

	Site	Approach	Thur 20'th January 2022					Sat 22nd January 2022					Wed 26 ${ }^{\text {th }}$ January 2022				
Site No.			DoS	Avg. Delay (sec)	Queue (m)	Rating	LoS	DoS	Avg. Delay (sec)	Queue (m)	Rating	LoS	DoS	Avg. Delay (sec)	Queue (m)	Rating	LoS
1	Gavan St / Anderson St	South	0.284	6.3	12.7	Excellent	A	0.251	6.3	10.9	Excellent	A	0.303	6.5	13.9	Excellent	A
		East	0.300	2.1	14.2	Excellent	A	0.298	2.2	13.9	Excellent	A	0.327	2.3	15.9	Excellent	A
		West	0.298	4.5	14.0	Excellent	A	0.323	4.4	15.6	Excellent	A	0.343	4.6	16.9	Excellent	A
2	Gavan St / Star Rd	East	0.226	1.6	5.1	Excellent	A	0.254	1.6	6.0	Excellent	A	0.246	1.7	5.7	Excellent	A
		North	0.214	9.8	6.0	Excellent	A	0.295	10.6	9.1	Excellent	A	0.233	10.2	6.4	Excellent	A
		West	0.194	0.6	1.1	Excellent	A	0.200	0.7	1.3	Excellent	A	0.210	0.6	1.2	Excellent	A
3	Gavan St / Barnard St	East	0.232	0.7	0.0	Excellent	A	0.207	0.7	0.0	Excellent	A	0.227	0.7	0.0	Excellent	A
		West	0.226	1.6	5.1	Excellent	A	0.251	1.5	5.6	Excellent	A	0.236	1.6	5.3	Excellent	A
4	Gavan St / Howitt Ln	East	0.225	0.2	1.0	Excellent	A	0.221	0.3	1.0	Excellent	A	0.220	0.2	1.0	Excellent	A
		North	0.037	10.7	0.9	Excellent	A	0.038	10.7	0.9	Excellent	A	0.037	10.5	0.9	Excellent	A
		West	0.166	0.6	0.0	Excellent	A	0.182	0.6	0.0	Excellent	A	0.171	0.6	0.0	Excellent	A
5	Gavan St / Camp St	South	0.136	5.9	3.5	Excellent	A	0.136	5.9	3.5	Excellent	A	0.136	5.9	3.5	Excellent	A
		East	0.135	0.7	1.3	Excellent	A	0.135	0.7	1.3	Excellent	A	0.135	0.7	1.3	Excellent	A
		West	0.208	0.6	2.5	Excellent	A	0.208	0.6	2.5	Excellent	A	0.208	0.6	2.5	Excellent	A
6	Anderson St / Barnard St / Ireland St	South	0.194	2.2	7.9	Excellent	A	0.176	2.3	7.1	Excellent	A	0.190	2.2	7.7	Excellent	A
		North	0.114	4.3	4.2	Excellent	A	0.116	4.2	4.2	Excellent	A	0.108	4.3	3.9	Excellent	A
		North-west	0.108	5.1	4.1	Excellent	A	0.093	5.1	3.4	Excellent	A	0.101	5.1	3.7	Excellent	A
		South-west	0.024	3.9	0.9	Excellent	A	0.019	4.0	0.7	Excellent	A	0.025	4.0	0.9	Excellent	A

